SuiteSparseGraphBLAS.from_type — Methodfrom_type(type, m, n)Create an empty GBMatrix of size m×n from the given type type.
SuiteSparseGraphBLAS.from_lists — Methodfrom_lists(I, J, V; m = nothing, n = nothing, type = nothing, combine = Binaryop.FIRST)Create a new GBMatrix from the given lists of row indices, column indices and values. If m and n are not provided, they are computed from the max values of the row and column indices lists, respectively. If type is not provided, it is inferred from the values list. A combiner Binary Operator can be provided to manage duplicates values. If it is not provided, the default BinaryOp.FIRST is used.
Arguments
I: the list of row indices.J: the list of column indices.V: the list of values.[m]: the number of rows.[n]: the number of columns.[type]: the type of the elements of the matrix.[combine]: theBinaryOperatorwhich assembles any duplicate entries with identical indices.
Examples
julia> from_lists([1,1,2,3], [1,2,2,2], [5,2,7,4])
3x2 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 5
[1, 2] = 2
[2, 2] = 7
[3, 2] = 4
julia> from_lists([1,1,2,3], [1,2,2,2], [5,2,7,4], type=Float64)
3x2 GBMatrix{Float64} with 4 stored entries:
[1, 1] = 5.0
[1, 2] = 2.0
[2, 2] = 7.0
[3, 2] = 4.0
julia> from_lists([1,1,2,3], [1,2,2,2], [5,2,7,4], m=10, n=4)
10x4 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 5
[1, 2] = 2
[2, 2] = 7
[3, 2] = 4
julia> A = from_lists([1,1,2,3], [1,1,2,2], [5,2,7,4], combine=Binaryop.PLUS)
3x2 GBMatrix{Int64} with 3 stored entries:
[1, 1] = 7
[2, 2] = 7
[3, 2] = 4SuiteSparseGraphBLAS.from_matrix — Functionfrom_matrix(m)Create a GBMatrix from the given Matrix m.
Examples
julia> from_matrix([1 0 2; 0 0 3; 0 1 0])
3x3 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 1
[1, 3] = 2
[2, 3] = 3
[3, 2] = 1Base.identity — Functionidentity(type, n)Create an identity GBMatrix of size n×n with the given type type.
Examples
julia> identity(Bool, 4)
4x4 GBMatrix{Bool} with 4 stored entries:
[1, 1] = true
[2, 2] = true
[3, 3] = true
[4, 4] = trueBase.Matrix — MethodMatrix(A::GBMatrix{T}) -> Matrix{T}Construct a Matrix{T} from a GBMatrix{T} A.
SuiteSparseGraphBLAS.square — Functionsquare(m::GBMatrix)Return true if m is a square matrix.
Examples
julia> A = from_matrix([1 2; 4 5]);
julia> square(A)
trueBase.size — Methodsize(m::GBMatrix, [dim])Return a tuple containing the dimensions of m. Optionally you can specify a dimension to just get the length of that dimension.
Examples
julia> A = from_matrix([1 2 3; 4 5 6]);
julia> size(A)
(2, 3)
julia> size(A, 1)
2SuiteSparseGraphBLAS.findnz — Methodfindnz(m::GBMatrix)Return a tuple (I, J, V) where I and J are the row and column lists of the "non-zero" values in m, and V is a list of "non-zero" values.
Examples
julia> A = from_matrix([1 2 0; 0 0 1]);
julia> findnz(A)
([1, 1, 2], [1, 2, 3], [1, 2, 1])Base.:== — Method==(A, B)Check if two matrices A and B are equal.
SuiteSparseGraphBLAS.nnz — Methodnnz(m::GBMatrix)Return the number of entries in a matrix m.
Examples
julia> A = from_matrix([1 2 0; 0 0 1]);
julia> nnz(A)
3SuiteSparseGraphBLAS.clear! — Methodclear!(m::GBMatrix)Clear all entries from a matrix m.
Base.copy — Methodcopy(v::GBVector)Create a copy of v.
Examples
julia> v = from_vector([1, 0, 0, 1, 2, 0]);
julia> u = copy(v)
6-element GBVector{Int64} with 3 stored entries:
[1] = 1
[4] = 1
[5] = 2
julia> u == v
true
julia> u === v
falsecopy(m::GBMatrix)Create a copy of m.
Examples
julia> A = from_matrix([1 0 1; 0 0 2; 2 0 1]);
julia> B = copy(A)
3x3 GBMatrix{Int64} with 5 stored entries:
[1, 1] = 1
[1, 3] = 1
[2, 3] = 2
[3, 1] = 2
[3, 3] = 1
julia> A == B
true
julia> A === B
falseBase.lastindex — Methodlastindex(m::GBMatrix, [d])Return the last index of a matrix m. If d is given, return the last index of m along dimension d.
Examples
julia> A = from_matrix([1 2 0; 0 0 1]);
julia> lastindex(A)
(2, 3)
julia> lastindex(A, 2)
3SuiteSparseGraphBLAS.mxm — Functionmxm(A::GBMatrix, B::GBMatrix; kwargs...)Multiply two sparse matrix A and B using the semiring. If a semiring is not provided, it uses the default semiring.
Arguments
A: the first matrix.B: the second matrix.[out]: the output matrix for result.[semiring]: the semiring to use.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,mask,AandB.
Examples
julia> A = from_matrix([1 2; 3 4]);
julia> B = copy(A);
julia> mxm(A, B, semiring = Semirings.PLUS_TIMES)
2x2 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 7
[1, 2] = 10
[2, 1] = 15
[2, 2] = 22SuiteSparseGraphBLAS.mxv — Functionmxv(A::GBMatrix, u::GBVector; kwargs...) -> GBVectorMultiply a sparse matrix A times a column vector u.
Arguments
A: the sparse matrix.u: the column vector.[out]: the output vector for result.[semiring]: the semiring to use.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,mask,AandB.
Examples
julia> A = from_matrix([1 2; 3 4]);
julia> u = from_vector([1, 2]);
julia> mxv(A, u, semiring = Semirings.PLUS_TIMES)
2-element GBVector{Int64} with 2 stored entries:
[1] = 5
[2] = 11SuiteSparseGraphBLAS.emult — Methodemult(A::GBMatrix, B::GBMatrix; kwargs...)Compute the element-wise "multiplication" of two matrices A and B, using a Binary Operator, a Monoid or a Semiring. If given a Monoid, the additive operator of the monoid is used as the multiply binary operator. If given a Semiring, the multiply operator of the semiring is used as the multiply binary operator.
Arguments
A: the first matrix.B: the second matrix.[out]: the output matrix for result.[operator]: the operator to use. Can be either aBinary Operator, or aMonoidor aSemiring.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,mask,AandB.
Examples
julia> A = from_matrix([1 2; 3 4]);
julia> B = copy(A);
julia> emult(A, B, operator = Binaryop.PLUS)
2x2 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 2
[1, 2] = 4
[2, 1] = 6
[2, 2] = 8SuiteSparseGraphBLAS.eadd — Methodeadd(A::GBMatrix, B::GBMatrix; kwargs...)Compute the element-wise "addition" of two matrices A and B, using a Binary Operator, a Monoid or a Semiring. If given a Monoid, the additive operator of the monoid is used as the add binary operator. If given a Semiring, the additive operator of the semiring is used as the add binary operator.
Arguments
A: the first matrix.B: the second matrix.[out]: the output matrix for result.[operator]: the operator to use. Can be either a Binary Operator, or a Monoid or a Semiring.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,mask,AandB.
Examples
julia> A = from_matrix([1 2; 3 4]);
julia> B = copy(A);
julia> eadd(A, B, operator = Binaryop.TIMES)
2x2 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 1
[1, 2] = 4
[2, 1] = 9
[2, 2] = 16SuiteSparseGraphBLAS.apply — Methodapply(u::GBVector; kwargs...) -> GBVectorApply a Unary Operator to the entries of a vector u, creating a new vector.
Arguments
u: the sparse vector.[out]: the output vector for result.[unaryop]: the unary operator to use.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor foroutandmask.
Examples
julia> u = from_vector([-1, 2, -3]);
julia> apply(u, unaryop = Unaryop.ABS)
3-element GBVector{Int64} with 3 stored entries:
[1] = 1
[2] = 2
[3] = 3apply(A::GBMatrix; kwargs...)Apply a Unary Operator to the entries of a matrix A, creating a new matrix.
Arguments
A: the sparse matrix.[out]: the output matrix for result.[unaryop]: the Unary Operator to use.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,maskandA.
Examples
julia> A = from_matrix([-1 2; -3 -4]);
julia> apply(A, unaryop = Unaryop.ABS)
2x2 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 1
[1, 2] = 2
[2, 1] = 3
[2, 2] = 4SuiteSparseGraphBLAS.apply! — Methodapply!(A::GBMatrix; kwargs...)Apply a Unary Operator to the entries of a matrix A.
Arguments
A: the sparse matrix.[unaryop]: the Unary Operator to use.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor for maskandA`.
Examples
julia> A = from_matrix([-1 2; -3 -4]);
julia> apply!(A, unaryop = Unaryop.ABS);
julia> A
2x2 GBMatrix{Int64} with 4 stored entries:
[1, 1] = 1
[1, 2] = 2
[2, 1] = 3
[2, 2] = 4SuiteSparseGraphBLAS.select — Methodselect(A::GBMatrix, op::SelectOperator; kwargs...)Apply a Select Operator to the entries of a matrix A.
Arguments
A: the sparse matrix.op: theSelect Operatorto use.[out]: the output matrix for result.[thunk]: optional input for theSelect Operator.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,maskandA.
Examples
julia> A = from_matrix([1 2; 3 4]);
# TODO: insert exampleSuiteSparseGraphBLAS.reduce_vector — Functionreduce_vector(A::GBMatrix; kwargs...)Reduce a matrix A to a column vector using an operator. Normally the operator is a Binary Operator, in which all the three domains must be the same. It can be used a Monoid as an operator. In both cases the reduction operator must be commutative and associative.
Arguments
A: the sparse matrix.[out]: the output matrix for result.[operator]: reduce operator.[accum]: optional accumulator.[mask]: optional mask.[desc]: descriptor forout,maskandA.
Examples
julia> A = from_matrix([1 2; 3 4]);
julia> reduce_vector(A, operator = Binaryop.PLUS)
2-element GBVector{Int64} with 2 stored entries:
[1] = 3
[2] = 7SuiteSparseGraphBLAS.reduce_scalar — Functionreduce_scalar(A::GBMatrix{T}; kwargs...) -> TReduce a matrix A to a scalar, using the given Monoid.
Arguments
A: the sparse matrix to reduce.[monoid]: monoid to do the reduction.[accum]: optional accumulator.[desc]: descriptor forA.
Examples
julia> A = from_matrix([1 2; 3 4]);
julia> reduce_scalar(A, monoid = Monoids.PLUS)
10Base.transpose — Functiontranspose(A::GBMatrix; kwargs...)Transpose a matrix A.
Arguments
A: the sparse matrix to transpose.[out]: the output matrix for result.[mask]: optional mask.[accum]: optional accumulator.[desc]: descriptor forout,maskandA.
Examples
julia> A = from_matrix([1 2 3; 4 5 6]);
julia> transpose(A)
3x2 GBMatrix{Int64} with 6 stored entries:
[1, 1] = 1
[1, 2] = 4
[2, 1] = 2
[2, 2] = 5
[3, 1] = 3
[3, 2] = 6Base.kron — Functionkron(A::GBMatrix, B::GBMatrix; kwargs...)Compute the Kronecker product, using the given Binary Operator.
Arguments
A: the first matrix.B: the second matrix.[out]: the output matrix for result.[binaryop]: theBinary Operatorto use.[mask]: optional mask.[accum]: optional accumulator.[desc]: descriptor forout,maskandA.
Examples
julia> A = from_matrix[1 2; 3 4]);
julia> B = copy(A)
julia> Matrix(kron(A, B, binaryop = Binaryop.TIMES))
4×4 Array{Int64,2}:
1 2 2 4
3 4 6 8
3 6 4 8
9 12 12 16